on fitting groups whose proper subgroups are solvable

نویسندگان

ali osman asar

چکیده

this work is a continuation of [a‎. ‎o‎. ‎asar‎, ‎‎‎on infinitely generated groups whose proper subgroups are solvable‎, ‎{em j‎. ‎algebra}‎, ‎{bf 399} (2014) 870-886.]‎, ‎where it was shown‎ ‎that a perfect infinitely generated group whose proper subgroups‎ are solvable and in whose homomorphic images normal closures of ‎finitely generated subgroups are residually nilpotent is a fitting‎‎$p$-group for a prime $p$‎. ‎thus this work is a study of a fitting ‎‎$p$-group whose proper subgroups are solvable‎. ‎new‎ ‎characterizations and some sufficient conditions for the‎ solvability of such a group are obtained‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite groups all of whose proper centralizers are cyclic

‎A finite group $G$ is called a $CC$-group ($Gin CC$) if the centralizer of each noncentral element of $G$ is cyclic‎. ‎In this article we determine all finite $CC$-groups.

متن کامل

finite groups whose minimal subgroups are weakly h*-subgroups

let $g$ be a finite group‎. ‎a subgroup‎ ‎$h$ of $g$ is called an $mathcal h $ -subgroup in‎ ‎$g$ if $n_g (h)cap h^gleq h$ for all $gin‎ ‎g$. a subgroup $h$ of $g$ is called a weakly‎ $mathcal h^ast $-subgroup in $g$ if there exists a‎ ‎subgroup $k$ of $g$ such that $g=hk$ and $hcap‎ ‎k$ is an $mathcal h$-subgroup in $g$. we‎ ‎investigate the structure of the finite group $g$ under the‎ ‎assump...

متن کامل

on soluble groups whose subnormal subgroups are inert

a subgroup h of a group g is called inert if‎, ‎for each $gin g$‎, ‎the index of $hcap h^g$ in $h$ is finite‎. ‎we give a classification ‎of soluble-by-finite groups $g$ in which subnormal subgroups are inert in the cases where $g$ has no nontrivial torsion normal subgroups or $g$‎ ‎is finitely generated‎.

متن کامل

Finite Groups Whose «-maximal Subgroups Are Subnormal

Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroup...

متن کامل

Classification of finite simple groups whose Sylow 3-subgroups are of order 9

In this paper, without using the classification of finite simple groups, we determine the structure of  finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of group theory

ناشر: university of isfahan

ISSN 2251-7650

دوره 5

شماره 2 2016

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023